Ir al contenido principal


Mostrando entradas de junio, 2017

Prediction of in-hospital mortality after pancreatic resection in pancreatic cancer patients: A boosting approach via a population-based study using health administrative data

Publicado en Plos One Abstract One reason for the aggressiveness of the pancreatic cancer is that it is diagnosed late, which often limits both the therapeutic options that are available and patient survival. The long-term survival of pancreatic cancer patients is not possible if the tumor is not resected, even among patients who receive chemotherapy in the earliest stages. The main objective of this study was to create a prediction model for in-hospital mortality after a pancreatectomy in pancreatic cancer patients. We performed a retrospective study of all pancreatic resections in pancreatic cancer patients in Spanish public hospitals (2013). Data were obtained from records in the Minimum Basic Data Set. To develop the prediction model, we used a boosting method. The in-hospital mortality of pancreatic resections in pancreatic cancer patients was 8.48% in Spain. Our model showed high predictive accuracy, with an AUC of 0.91 and a Brier score of 0.09, which