Ir al contenido principal

Entradas

Mostrando las entradas etiquetadas como TFG o TFM

Defensa de TFM: Un sistema para la verificación de autoría de obras pictóricas basado en técnicas de aprendizaje profundo

El alumno Juan Montes Cano acaba de defender su TFM en el que compara varios modelos para la verificación de autoría de obras pictóricas basados en técnicas de aprendizaje profundo.  

Defensa de TFM: Uso de redes neuronales generativas para la generación de imágenes a partir de texto

TFM publicado en la biblioteca de la URJC. En este trabajo se realiza un estudio de los distintos tipos de GANs y un estado del arte del problema de generación de imágenes a partir de texto. En la parte práctica se han realizado múltiples experimentos, partiendo de problemas sencillos de generación de imágenes hasta llegar a plantear modelos que generen imágenes a partir de texto.  

Defensa de TFG: Neuropaint, evolución de la biblioteca Neurotronik para la representación de redes profundas de neuronas artificiales

TFG publicado en Github y en la biblioteca de la URJC La representación gráfica de las redes de neuronas artificiales profundas tiene un alto interés en el campo científico. Numerosos trabajos científicos que incluyen este tipo de redes son presentados a diario en congresos y revistas de todo el mundo. En este Trabajo de Fin de Grado se proponen una serie de mejoras a la interfaz de usuario de la aplicación NeuroPaint, desarrollada por Marcos Ruiz en el año 2021, que permitía la representación gráfica, en notación AlexNet, de una amplia variedad de redes neuronales profundas. La aplicación desarrollada es de código abierto y este enlace te permite utilizarla.

Defensa de TFG: Predicción Automática de Características Demográficas de Individuos basada en su Escritura Manuscrita

TFG publicado en la biblioteca de la URJC. Este Trabajo de Fin de Grado desarrolla modelos de IA para clasificar textos manuscritos en inglés y árabe según diferentes atributos relativos a los escritores de los escritores. Entre estos atributos se han considerado: el género, la mano de escritura, la lengua materna y el rango de edad. La clasificación de textos manuscritos es una tarea muy importante en sectores como Biometría Forense y Psicología, de cara a sacar conclusiones en base a las características de los escritores. Para realizar esta tarea se han utilizado dos modelos de redes neuronales: una red convolucional sencilla (CNN) y otra más compleja con capas de tipo Inception.   Texto reconocido como de un hombre menor de 20 años (base de datos LAMIS-MSHD)    

Defensa de TFG: Detección de Sellos y Logos en Imágenes de Documentos Históricos usando Redes Neuronales Profundas

TFG publicado en la biblioteca de la URJC. Este Trabajo de Fin de Grado ha abordado la problemática de detección de sellos y logos en imágenes de documentos históricos usando las redes neuronales profundas de detección YOLOv5. Este tipo de documentos son muy valiosos para la preservación del patrimonio cultural de los países, y su análisis automático presenta dificultades debido al proceso de digitalización y el borrado de tinta de los documentos, entre otros factores. 

Defensa de TFG: Una aplicación web para la representación gráfica de redes de neuronas artificiales

TFG publicado en Github y en la biblioteca de la URJC En este Trabajo Fin de Grado se ha creado una aplicación web llamada Neuropaint enfocada en la creación de representaciones gráficas de redes profundas de neuronas. Este enlace a github da acceso al código, y este otro enlace da acceso a la aplicación.