Ir al contenido principal

Entradas

Mostrando entradas de 2022

Concesión del proyecto HADAS: Análisis de Texto Manuscrito para Aplicaciones Digitales de la Sociedad

Financiado por el MICINN. Este proyecto aborda el problema de la transcripción del texto manuscrito continuo, obtenido desde páginas digitalizadas de documentos genéricos. Considera muchas de las posibles variabilidades implicadas (por ejemplo, la estructura de los documentos donde aparece el texto o las diferencias interpersonales e intrapersonales entre los estilos de escritura). Este problema está lejos de poder resolverse eficazmente de forma automática. Por ello, y debido a sus potenciales aplicaciones, la transcripción y comprensión del contenido de los documentos manuscritos digitalizados seguirá siendo una necesidad importante para nuestra sociedad. Así, este proyecto investiga varios problemas científicos e industriales desafiantes relacionados con el procesamiento automático de texto manuscrito contenido en imágenes digitales de documentos. En particular: (1) el reconocimiento de palabras manuscritas en castellano; (2) la transcripción de documentos históricos; (3) l

Defensa de TFM: Uso de redes neuronales generativas para la generación de imágenes a partir de texto

TFM publicado en la biblioteca de la URJC. En este trabajo se realiza un estudio de los distintos tipos de GANs y un estado del arte del problema de generación de imágenes a partir de texto. En la parte práctica se han realizado múltiples experimentos, partiendo de problemas sencillos de generación de imágenes hasta llegar a plantear modelos que generen imágenes a partir de texto.  

Defensa de TFG: Neuropaint, evolución de la biblioteca Neurotronik para la representación de redes profundas de neuronas artificiales

TFG publicado en Github y en la biblioteca de la URJC La representación gráfica de las redes de neuronas artificiales profundas tiene un alto interés en el campo científico. Numerosos trabajos científicos que incluyen este tipo de redes son presentados a diario en congresos y revistas de todo el mundo. En este Trabajo de Fin de Grado se proponen una serie de mejoras a la interfaz de usuario de la aplicación NeuroPaint, desarrollada por Marcos Ruiz en el año 2021, que permitía la representación gráfica, en notación AlexNet, de una amplia variedad de redes neuronales profundas. La aplicación desarrollada es de código abierto y este enlace te permite utilizarla.

Defensa de TFG: Predicción Automática de Características Demográficas de Individuos basada en su Escritura Manuscrita

TFG publicado en la biblioteca de la URJC. Este Trabajo de Fin de Grado desarrolla modelos de IA para clasificar textos manuscritos en inglés y árabe según diferentes atributos relativos a los escritores de los escritores. Entre estos atributos se han considerado: el género, la mano de escritura, la lengua materna y el rango de edad. La clasificación de textos manuscritos es una tarea muy importante en sectores como Biometría Forense y Psicología, de cara a sacar conclusiones en base a las características de los escritores. Para realizar esta tarea se han utilizado dos modelos de redes neuronales: una red convolucional sencilla (CNN) y otra más compleja con capas de tipo Inception.   Texto reconocido como de un hombre menor de 20 años (base de datos LAMIS-MSHD)    

Defensa de TFG: Detección de Sellos y Logos en Imágenes de Documentos Históricos usando Redes Neuronales Profundas

TFG publicado en la biblioteca de la URJC. Este Trabajo de Fin de Grado ha abordado la problemática de detección de sellos y logos en imágenes de documentos históricos usando las redes neuronales profundas de detección YOLOv5. Este tipo de documentos son muy valiosos para la preservación del patrimonio cultural de los países, y su análisis automático presenta dificultades debido al proceso de digitalización y el borrado de tinta de los documentos, entre otros factores. 

Publicación en congreso: Handwritten Word Recognition on the Fundación-Osborne Dataset

Presentado en el congreso IWINAC 2022 y publicado como artículo en Lecture Notes in Computer Science .   Incluso hoy en día, el reconocimiento de texto manuscrito escaneado constituye un problema de investigación desafiante, especialmente cuando se trata de realizar tareas de reconocimiento en bases de datos históricas.  En este contexto, el objetivo principal del presente trabajo es exponer los resultados obtenidos tras entrenar una red convolucional profunda Seq2Seq con mecanismo de atención utilizando una combinación de imágenes de entrenamiento de palabras tanto de bases de datos contemporáneas como históricas, consiguiendose un error a nivel de palabra inferior al 40%. A la luz de los resultados obtenidos, se discute el efecto del uso de diferentes proporciones de texto moderno e histórico durante el proceso de entrenamiento sobre el rendimiento final del sistema.

Publicación en congreso: Deep Layout Extraction Applied to Historical Postcards

Presentado en el congreso IWINAC 2022 y publicado como artículo en Lecture Notes in Computer Science .  En este trabajo se presenta una arquitectura neuronal profunda para el análisis de la estructura de postales históricas manuscritas.   La arquitectura se basa en una red de neuronas profunda de segmentación semántica que contempla diferentes tipos de categorías como: sellos, matasellos, texto manuscrito, ilustraciones y fondo.  El trabajo consigue unos resultados de acierto superiores al 92% a nivel de píxel.

Publicación en revista: A Bibliometric Analysis of Off-line Handwritten Document Analysis Literature (1990-2020)

Artículo publicado en la revista Pattern Recognition . Autores: Victoria Ruiz-Parrado, Ruben Heradio, Ernesto Aranda-Escolastico, Ángel Sánchez, José F. Vélez. El análisis automático de la escritura manuscrita es un reto muy importante. Hay que superar muchas dificultades (por ejemplo, diferentes estilos de escritura, alfabetos, idiomas, etc.) para abordar diversos problemas (reconocimiento de textos, verificación de firmas, identificación de escritores, localización de palabras, etc.). Este trabajo revisa la creciente literatura sobre el análisis de documentos manuscritos offlie en los últimos treinta años. Utilizando técnicas bibliométricas se examina una muestra de 5389 artículos. Este trabajo identifica (i) los artículos más influyentes en el área, (ii) los autores más productivos y sus redes de colaboración, (iii) los países e instituciones que han liderado la investigación sobre el tema, (iv) las revistas y conferencias que han publicado más artículos, y (v) los temas de investi