Ir al contenido principal

Entradas

Mostrando entradas de octubre, 2018

Multiview 3D human pose estimation using improved least-squares and LSTM networks

Publicado en Neurocomputing En este artículo se presenta un método para estimar la pose del cuerpo humano en 3D a partir de múltiples vistas 2D utilizando aprendizaje profundo. El sistema está formado una sucesión de subsistemas. Primeramente, se obtienen las poses 2D usando una red de neuronas profunda que detecta los puntos claves de un esqueleto simplificado del cuerpo en las vistas disponibles. Luego, se recosntruyen las coordenadas 3D de cada punto utilizando una propuesta original, basada en optimización de mínimos cuadrados, que analiza la calidad de las anteriores detecciones 2D para decidir si aceptarlas o no. Una vez que se dispone de las poses 3D, se estima la posición completa del cuerpo, teniendo en cuenta la historia pasada para refinarla mediante una red LSTM. En la parte experimental, el artículo ofrece unos resultados competitivos cuando se compara con trabajos representativos de la literatura. In this paper we present a deep learning based method to estimate the